List of New Cleaner Production Technology Projects (funding amount ceiling of HK\$650,000)

Item	Category	Name of Technology
1		Adoption of chemical scrubbing and activated carbon adsorption exhaust air treatment system to reduce volatile organic compounds (VOCs) emissions
2		Adoption of chemical scrubbing and electrostatic precipitator exhaust air treatment system to reduce volatile organic compounds (VOCs) emissions
3		Adoption of biofiltration technology and activated carbon adsorption exhaust air treatment system to reduce volatile organic compounds (VOCs) emissions
4		Adoption of automatic pad printing system to reduce volatile organic compounds (VOCs) emissions
5		Adoption of automatic laminating machine to reduce volatile organic compounds (VOCs) emissions
6		Adoption of automatic edge spraying machine to reduce volatile organic compounds (VOCs) emissions
7		Adoption of Automatic Wet Grinding Machine to Reduce Volatile Organic Compounds (VOCs) Emissions
8		Adoption of low nitrogen oxides (NOx) burner to reduce air pollutant emissions
9	Air Pollutants Emission Reduction Technologies	Adoption of film blowing machines integrated with water-based ink printers to reduce volatile organic compounds (VOCs) emissions
10		Adoption of electric induction furnace to reduce air pollutant emissions
11		Adoption of zeolite adsorption and catalytic oxidation technologies to reduce volatile organic compounds (VOCs) emissions
12		Adoption of zeolite adsorption and regenerative thermal oxidation technologies to reduce volatile organic compounds (VOCs) emissions
13		Adoption of zeolite adsorption technology to reduce volatile organic compounds (VOCs) emissions
14		Adoption of oil mist recovery air purifier to reduce volatile organic compounds (VOCs) emissions
15		Adoption of direct thermal combustion technology to reduce volatile organic compounds (VOCs) emissions
16		Adoption of activated carbon adsorption and catalytic oxidation technologies to reduce volatile organic compounds (VOCs) emissions
17		Adoption of activated carbon adsorption and regenerative catalytic oxidation technologies to reduce volatile organic compounds (VOCs) emissions
18		Adoption of dehumidifier with heat recovery technologies to reduce volatile organic compounds (VOCs) emissions
18		Adoption of dehumidifier with heat recovery technologies to reduc volatile organic compounds (VOCs) emissions

Item	Category	Name of Technology
19		Adoption of ultraviolet (UV) cured coating system to reduce volatile organic compounds (VOCs) emissions
20		Adoption of catalytic oxidation technology to reduce volatile organic compounds (VOCs) emissions
21		Adoption of permeable membrane, resin adsorption and steam desorption system to reduce volatile organic compounds (VOCs) emissions
22		Adoption of regenerative catalytic oxidation technologies to reduce volatile organic compounds (VOCs) emissions
23		Adoption of wet scrubbing and biofiltration technologies to reduce volatile organic compounds (VOCs) emissions
24		Adoption of digital printing machine to reduce volatile organic compounds (VOCs) emissions
25		Adoption of resin adsorption and steam desorption system to reduce volatile organic compounds (VOCs) emissions
26		Adoption of automatic cleaning system with rubber blanket to reduce volatile organic compounds (VOCs) emissions
27		Adoption of selective non-catalytic reduction (SNCR) Nitrogen Oxides (NOx) reduction technology to reduce air pollutant emissions
28		Adoption of selective catalytic reduction (SCR) Nitrogen Oxides (NOx) reduction technology to reduce air pollutant emissions
29		Adoption of electrostatic precipitator and activated carbon adsorption technologies to reduce volatile organic compounds (VOCs) emissions
30		Adoption of electrostatic precipitator to reduce volatile organic compounds (VOCs) emissions
31		Adoption of central melting furnace and automatic distribution system to save energy
32	_	Adoption of automatic condensate removal systems to save energy
33		Adoption of the cold-mixing process to save energy
34		Adoption of energy optimization system for air conditioners to save energy
35	Energy Efficiency	Adoption of energy optimization system to save energy
36	Energy Efficiency	Adoption of vertical feed pellet mill for biomass pelletising process to save energy
37		Adoption of energy efficient barrel infrared heating system to save energy
38		Adoption of oxygen trim system to save energy
39		Adoption of high-temperature air & liquid multi-flow dyeing machine to save energy

Item	Category	Name of Technology
40		Adoption of movable heating plate to save energy
41		Adoption of Pilger mill with Assel mill to save energy
42		Adoption of continuous furnace to save energy
43		Adoption of closed circuit cooling system to save energy
44		Adoption of Ultra-violet Light-Emitting Diode (UV-LED) powered printed circuit board (PCB) solder mask exposure system to save energy
45		Adoption of electronic commutated (EC) centrifugal fans to save energy
46		Adoption of pre-cooling evaporators and double-effect linkage technology of evaporative condensers to save energy
47		Adoption of heat pump to save energy
48		Adoption of magnetic fuel activators to save energy
49		Adoption of internal circulation anaerobic reactor to improve wastewater quality
50		Adoption of Reverse Osmosis (RO) and Catalytic Wet Air Oxidation (CWAO) integrated system to reduce wastewater discharge
51		Adoption of reverse osmosis membranes and bipolar membrane separation technology to reduce wastewater discharge
52		Adoption of open width-type washing machine to save water
53		Adoption of ultra-violet (UV) photocatalytic technology to improve wastewater quality
54		Adoption of inline colorimeter for mercerisation to reduce wastewater discharge
55	Effluent Control and Reduction	Adoption of automatic machine for rice noodle production to reduce wastewater discharge
56	Technologies	Adoption of low liquor ratio dyeing machine to reduce wastewater discharge
57		Adoption of low-temperature vacuum evaporator to reduce wastewater discharge
58		Adoption of re-utilisation of high density sludge to treat acid copper wastewater recycling system to improve wastewater quality
59		Adoption of Integrated Fixed-Film Activated Sludge- Mainstream Anammox (IFAS-MOX) technology to improve wastewater quality.
60		Adoption of air sprayer and automatic sponge absorber to reduce wastewater discharge
61		Adoption of vertical continuous graphic electroplating lines to reduce wastewater discharge

Item	Category	Name of Technology
62		Adoption of high-temperature air & liquid dyeing machine to reduce wastewater discharge
63		Adoption of continuous washing technology to reduce wastewater discharge
64		Adoption of ultrasonic technology to reduce wastewater discharge
65		Adoption of ultrafiltration (UF) membrane, reverse osmosis (RO) and ion exchange technology to improve wastewater quality
66		Adoption of Electro Fenton reaction with Membrane Bioreactor (MBR) technology to improve wastewater quality
67		Adoption of waste liquid recycling machine to reduce wastewater discharge
68	Solid Waste Reduction Technologies	Adoption of sludge drying technology to reduce solid waste generation
69		Adoption of digital cutting machine to reduce solid waste generation
70		Adoption of laser direct imaging (LDI) exposure machine to reduce solid waste generation